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I. Introd,-ct ion

In studies of wave propagation in magnetized plasmas it is often of

interest to excite low frequency modes from a remote location under con-

trollable conditions. These modes can be used for a variety of purposes,

e.g., as a tool for diagnosing plasma properties, 1) to provide a seed for

growth of low frequency turbulence, (2,3) or perhaps to establish a low fre-

quency communications link, as may be the case in the ionosphere. (4-6) Regard-

less of the particular application, a common problem is that at low frequencies

it is difficult to excite an external electromagnetic signal that penetrates

deeply into the plasma where the propagation of the low frequency mode is

desired. For this reason one is lead to consider processes in which the

low frequency mode is indirectly excited by energy sources which penetrate

the plasma more readily. Two obvious choices are particle streams and high

frequency waves. As is well known, both of these sources can trigger a

variety of parametric instabilities whose decay channels can coincide with

the desired low frequency mode. An intrinsic drawback of the parametric

excitation scheme is that the amplitude and phase of the low frequency mode

cannot be controlled by the experimentalist, and are difficult to predict

theoretically. Essentially, because the saturation of the instability is

the result of complicated nonlinear interactions.

A more controllable process consists of beating two high frequency

pump waves of frequency wl and w2 to drive a low frequency mode at w = -

2' resonantly. In this process the power transferred to the low frequency

mode depends on the product of the individual pump powers, and as is illus-

trated in this study, the transfer coefficient can be calculated from first

principles. In addition, the strict constraint imposed by the resonance

criterion permits the localization of the excitation region. Although the
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gencral idea of beat excitation can be applied to various plasma modes, 7 1 1 )

the majority of previous theoretical studies have considered the generation of

electrostatic modes in plasmas which are transparent to the pump waves. Here

we consider a problem in which the existence of the plasma nonuniformity is

advantageously used to localize the generation of an electromagnetic wave in

the whistler regime.

The geometry of the problem is sketched in Figure 1. Two high frequency

electromagnetic waves, at closely spaced frequencies w1 and w20 are launched

from vacuum into a magnetized plasma along the direction of the zero order

density gradient VN . In this work we concentrate primarily on the case where

the static magnetic field B points against VNo, i.e., -B 01 VN0 . This choice

allows ready comparison with ongoing experiments performed in the northern

auroral ionosphere. (12) The vacuum polarization of the electromagnetic waves

is chosen to be left-handed in order to avoid excitation of unwanted electro-

static nonlinear phenomena near the plasma resonance, i.e., at wp = W., where

w is the local electron plasma frequency and j = 1,2. Each electromagneticp

wave penetrates into the plasma up to its left-hand cut-off layer, i.e., where

2 = W. ( - 02), with 02 the electron gyrofrequency and it is assumed that
p jj

> Q. At this location each wave is reflected and exhibits an Airy function
J

standing wave pattern. The two Airy patterns are shifted with respect to each

other because they are centered about different reflection layers. It is

this shift of the two patterns that produces a spatially localized inter-

action pattern oscillating at the beat frequency w = w1 - 2 with a charac-

teristic kz spectrum, where k is the wavenumber along B . The essentialz z --o

idea is this excitation scheme consists of adjusting the various free para-

meters such that the kz corresponding to a whistler at wI - 02 falls as

closely as possible to the spectral peak associated with the beat of the

individual Airy patterns. Physically, the idea is to generate a matched
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antenna inside the plasma near the location defined by = W. (0. -
p j

The possibility of matching to a whistler is greatly facilitated because

this mode exhibits a dispersion relation which is essentially constant over

the region where the beat antenna is formed.

A semi-quantitative criterion for the feasibility of generating a matched

antenna in a plasma can be obtained as follows. Near the reflection layer of
th

the j electromagnetic wave the Airy pattern exhibits an effective wavenumber

k % (k I1 /L where k. W./c, with c the speed of light and L the density
Aj

gradient scale length. Since iw. << 1, the beat interaction pattern has aj

significant spectral amplitude at a fraction of kA. Equating the wavenumber

of the whistler wave k with kA and using the whistler dispersion relation

k = (W p/u) (w/c) results in the condition
p

W )-2/3, (k j (1))

where it is assumed that w. 2 2>>02 Equation (1) indicates that in plasmas
3 p

in which the density gradient is sufficiently large it is possible, in prin-

ciple, to use beat excitation to resonantly excite a low frequency whistler,

i.e., w1/- < 1. For instance, in the ionosphere k.L - 103, SI/27 % 1.4 Mtlz,J

hence Eq. (1) shows the beat coupling to waves in the 10 kliz range is possible.

In a laboratory plasma with an attainable k.L % 102 and IBJ 01 400G coup-

ling to whistlers at w/2r '% 50 MHz is expected.

Although the most efficient coupling to a whistler mode is accomplished

by an oscillating current perpendicular to B 0, i.e., magnetic multipole ex-

citation, such a current cannot be directly generated by the beat of two high

frequency waves propagation along B . Therefore, in this geometry coupling-O

is accomplished through the less efficient electric dipole excitation due to

the generation of a beat electric field along B . The aim of this study is to--o

i!
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calculate the coupling coefficient for this process taking into consideration

the important effects of plasma nonuniformity.

The beat electric field along B arises due to the charge separation--o

produced by the beat ponderomotive force acting on the plasma electrons.

The weak but finite variation of the high frequency pumps across B o, i.e.,

finite spot size at the reflection layer, provides the necessary coupling

to a slightly oblique whistler. The transverse wavenumber spectrum of the

beam spot at the reflection layer defines the spectrum of oblique whistlers

radiated by the beat antenna.

The theoretical description of whistler mode excitation by the beat

of two high frequency pumps requires three separate calculations: 1) a suit-

able representation of whistler mode properties, 2) calculation of nonlinear

beat coupling, i.e., the source term for the whistler wave equation, 3)

radiation of whistler using appropriate source functions in a nonuniform

plasma. Next we proceed to discuss each of these calculations in Section

II. A discussion of the results is given in Section III.

Av

Avflhl 1 iJ/or

Dist S prlt .11
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II1. rlheur,

First we proceed to describe the whistler mode generated by the beat

excitation process. A simplifying but realistic assumption is that the

dispersion properties of the whistler mode can be obtained by assuming that

the plasma density is constant and equal to the density n0 at the reflection

layer of the high frequency waves. This is justifiable because the whistler

mode is far from any cut-off or resonance, and for the plasmas of interest

k , . -' I while the beat frequency antenna is effective over spatial scales

of the order of 2i/kz. The whistler wave at frequency w propagates at a

small angle relative to B with a wavenumber k = k + k z, where k =

hk (k x-+ k Y- < fk z. Since k-_ is fixed by the

finite transverse dimension of the high frequency beams, k is determinedz

self-consistently from the plasma dispersion relation at frequency w.

Using the cold plasma fluid equations together with Maxwell's equations

yields the tollowing differential equations which determine the spatial depen-

dence of the whistler electric field

-2d I k 2 -± 1 k ±ik - dE
2 + d-E 4 -- o' =2 k ( 2--- +  [ -- (k,_/k o  11 1[ y F, 2 [: 4k ) 2 2

[( d2- )/k (2)

2d- -d2E
+dz,, (k0/o'E (k~k)k ]

-(kjkfIE =(. +ik )/k_ (k ik)/k ] L , (3)
0 x o dz y x o dz

+ -, 11 t(2where 1:  x (,po/ t: -1 po /Wj)whr (:1 (Ii + ii- )/2, t i I - " w [1 t*(sl/w)] c,, = 1 - ( "/w,
x y ~

k = .,/c, 1: and E are the x and y components of the electric field, w is

the electron plasma frequency at the reflection layer, and a time dependence

exp(-iw,,t) is assumed. The plus and minus superscripts refer to the right- and

left-handed polarizations, respectively. The z dependence is retained in Eqs.

(2) and (3) in order to incorporate the dipole field generated by the beat

frequency antenna. For small angles of propagation relative to the magnetic
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field lines, one obtains from Eq. (2) the approximate whistler dispersion

relation

+ 2
(kz/ko) 2 E (4)

20 ~ 0

which is seen to be insensitive to k The quantity /Wf is much larger

than unity,, and the propagating mode in Eq. (4) is associated with the E

wave while the evanescent mode corresponds to the E+ wave. The high evanes-

cence of the latter and its weak coupling to the propagating mode allow us to

neglect its effect on the propagation of the E- wave. Incorporating these

assumptions, one finds that the whistler mode behavior is governed by the

following scaled differential equation,

d2E- b2E- = S, (5)
dC2

2 1( k) w Wp2/Iw,

where C- (kk 2 0 z

dE
S -[(k - ik )/2k I . (6)

y x 0 d

The source term S arises from the generation of an ambipolar electric field

E due to the beat ponderomotive force produced by the high frequency pumps.
-5

This effect is calculated next.

As already stated in Sec. I, the relevant nonlinearity in the problem

is the beat of t'e two high frequency pumps near their reflection layers.

The lowest order nonlinear effects occur at zero frequency (d.c.), at low

frequency w = w - w2, and at ihigh frequencies w1 + w2, 
2w,, 2w2. The zero

frequency effect is produced by the self-modulation of each wave, giving

rise to a modification of the zero order density profile which we do not

include in the present calculation. The high frequency sideband at w1 + w2

as well as the harmonics 2w1 , 2w2 are unable to excite a wave because thek --
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spatial interaction pattern does not provide a suitable k match, as is pos-

sible for the whistler wave at w - 02"

The nonl inearity at ( = (,I- 1, can be obtained from the electron fluid

equation of motion by iteration. First one neglects the nonlinear effects

and calculates the high frequency response of the electrons to each pump

separately

v = v exp(-iwlt) + I2 exp(-iwt), (7)

where v. L IEi = 1, 2, and

I +iY 0

- -iY. 1 0 (8)Z.J mw i (l-Yf') '

- 0 0 l-).
j

with Y. = 2/w., and e and m are the electron charge and mass. The nonlinear3 J

effect is calculated by inserting the linearized velocities into the averaged

force equation. This yields a ponderomotive force oscillating at frequency

acting on the electrons and given by

d * *d e

no[m(vz - v2 + + -(v 1  B2 + 2  B (9)

where B. is the magnetic field of wave j. We choose to excite both pump

waves with left-handed circular polarization to avoid additional effects

at .= . The appropriate representation of the pump electric field is

then E-, defined in a manner similar to the field of the whistler wave.3

Using Faraday's law to eliminate B. yields-.
2n2n E
2  

-* 1 E-* d -1ep_~) (0

0 1 0 1r pith d
mw ~ I-13(: )EIj~ + (1Y2 E2d -E 1lexp(-iwt), (10)

where it is seem that the force points along the density gradient VN 0, and
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that both pumps have symmetrical contribution, as expected. The effect of

this force is to produce an ambipolar electric field oscillating at w whose

self-consistent strength is found as follows.

The low frequency electron equation of motion takes the form

du
m '-= -e E + F/n (11)

where u is the low frequency component of the electron velocity, and E

is the self-consistent ambipolar field which also acts on the ions of mass

i, charge q, and velocity ui through

du.M du q E , (12)

where the effect of the ion ponderomotive force is neglected because of the

large inertia of the ions and it is also assumed that w >> Qi (i.e., neg-

ligible resonance enhancement from the ion gyrofrequency s2i). Solving for

the linearized velocities from Eqs. (11) and (12) and using the continuity

equations together with Poisson's equation yields

E (WP°/W) F (13)
S n ec -

2 2

where c 1 - (w po/W) - ( pi/) w pi is the ion plasma frequency, and

characteristically (w pi/w) 1.

It is now possible to use Eqs. (10) and (13) to obtain the source

term S in Eq. (6)

-eE 1E02(kX ik x)f(kx'k , (o/k)- d I d *
S(k0x kyx xylpo d [1 21 T 02 +

V! d 1  (14)

l-V 2 d'

where the e . .ituu. of each pump field is expressed as



Edy, Lo) f j .(x, Y)ij. (15)

The quanTtity F corresponds to the electric field amplitude of wave j at

at itr I*Cfect ion layer, and the function f(k ,k ) in Eq. (14) is the Fourier

xy"
Yi

transform of the product of the transverse envelopes of each pump beam, i.e.,

fx) in q. (15). A typical functional dependence is f.(xy) yexpo-(xj2+y 2)/d 2
1 3

with k d - 1, and k- x, 2/d.

To completely determine the spatial dependence of the source tern S

we need to find the functions i.e., the wave equations for the high

frequency pumps need to be solved near their respective reflection layer.

This is easily done in the relevant limit kLk~ « < 1, which gives

-2 2 o
k. 1 A [a (Z) +to (Z) =0 , (16)

where the explicit spatial dependence of the dessity profile is indicated.

We take this variation to be essentially linear near the reflection layer,

i.e., we choose

(z) -- 
(17)

i 2 (1-Y J) -

with z= 0 corresponding to the reflection layer of the higher frequency

pump "1" Substituting Eq. (17) in Eq. (16) gives the Airy differential

equation. After scaling the spatial variable in the equation of pump 2

to that in the equation of pump 1, one obtainz. the solutions

1 ( 3  = Ai(,,), (18)

t2( ) = Ai(, + A), (19)

where = (klL)2/3(z/L), A = (kIL)2/3[(1-Y1 ) - (W2/W1)2 (1- Y2)], and Ai

refers to the Airy functions. These solutions are valid in the neighborhood



of tile cut-off for the left wave. Using Eqs. (18) and (19) in Eq. (14)

determines the source term completely.

The next task consists of solving Eq. (5) with the given source S to

determine the amplitude of the whistler waves excited by the beat frequency

antenna. Using the Green's function method yields

E (kx , k, ) = - k-ikx) {exp(ib ) d1' Es(') exp(-ibW')

-exp(-ibC) fdc' Es (c')exp(ibc')} ,(20)C

from which the asymptotic fields are found to be

E (k , ) a(±-) exp(±ib ), C4- ± (21)

where

1. 1

±a d Ai() Ai'( +A) + Ai( A)Ai'( )]exp(±iKC),
1

-(Wpo/w) 2 (k ikx )f(k , k ) eE0 1E0 2  
(22)

a = Es 2 W 1 J, (23)

2/12

K = bk L/(k1L)

and the prime means a derivative with respect to F. Recalling the assumption

that Q/w j << 1, this implies that (1 - Y1) _ (1 - Y2) , hence the two terms

in the integrand of Eq. (22) have nearly identical coefficients and this

allows us to approximate Eq. (22) by

iKa (24)
1-Y

where

I= d Ai(C) Ai( +A)exp(-iKQ). (25)

_co
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To obtain cd-w), I is replaced by its complex conjugate.

Since the Airy functions are not square integrable in the interval

(--, 0), the Fourier transform integral I is not well defined. The diffi-

culty arises as C - -- where the function Ai oscillates rapidly but its

amplitude decays slowly. This behaior results from our usage of the Airy

function solutions away from the neighborhood of the turning points. Since

the antenna oscillating at the beat frequency is produced by the interaction

of the main lobes of the Airy patterns within a distance of a few whistler

wavelengths (2 7/k z), the difficulty introduced by the highly oscillatory

tail is easily overcome by introducing in the integrand of Eq. (25) a weight

function w(,) = exp(-C2/4A 2) which is nearly constant over the important inter-

action region and cancels the slowly decaying unphysical behavior of the tail

as - - . Other choices for w(C) have been tried and the results are found

to be relatively insensitive to the particular form used. To illustrate the

spatial dependence of the beat frequency antenna field generated by the

pump waves, a plot of the function Ai( )Ai(C + A)w(&) is shown in Fig. 2

for a choice of ., = 10. The arrows at w and w2 indicate the turning points

for each pump, and the pure sinusoidal wave at the top of the figure repre-

sents the wavelength of the excited whistler. The normalized k spectrumz

of the antenna is shown in Fig. 3, where the arrows indicate the corresponding

wavenumbers of the excited whistlers; only those wavenumbers satisfying the

whistler wave dispersion relation of Eq. (4) are allowed to propagate. The

ordinate represents the magnitude of the integral I and the two sidebands cor-

respond to the two possible excitation directions of the whistlers for each

given value of k.. Since it is expected that the transverse beam spot is axially

symmetric in k±, the antenna radiates the whistler waves along a cone whose axis

is along the z-axis and whose half-angle is given by tan-1 (kj_/kz) as sketched
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in Figure 1.

Once the freqiuency of one of the pumps is chosen, and the radiated whistler

is selected then, for a given density scale length L, both K and A are uniquely

determined. This is shown in Fig. 4 where both K and A are plotted versus the

whistler frequency for fixed values of wl/2n and L corresponding here to the

case of ionospheric plasmas. The process of fixing A also determines, indepen-

dently of K, the interaction pattern of Fig. 2 and its spectrum in Fig. 3. The

most efficient coupling occurs when the value of K shown in Fig. 4 coincides

%,ith the maxima of the spectrum curve shown in Fig. 3. Although there is no

a priori reason for the value of K to be close to the spectral peak of the

antenna, it turns out that for parameters typical of ionospheric and labora-

tory plasmas it is possible to approach the optimum value, as exemplified by

the arrows in Figure 3.

Finally, we proceed to calculate the strength of the radiated signal and

the efficiency of the coupling between the high frequency pump waves and the

whistler wave.

We substitute Eq. (24) into Eq. (21) and take the inverse Fourier trans-

for'm of the transverse dependence to obtain

I (x,y,z) 1v ER exp[i(±bkoz ± + 0 + i/2)], z ± (26)

where

_ (po/) 2eK 01ll0 2 11 " 2 2

E ) C m-2(Y exp 1-2(x + y )/d2], (27)MW u,(l-Y1) d

4 is the phase of I, and 0 = tan- (y/x). Equation (27) gives the total

amplitude of the radiated field of the whistler wave. A qualitative sketch

is shown in Fig. 5. It exhibits a null on the z axis, and a maximum along

a circular ring of radius d/2.
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The average energy flux radiated in either the positive or negative z

dirct io, is given in MKS units by 2 (r . B ), which leads to the following

oril ki tht total power radiated

['1 = / 0 f dxdy E

11 R = 2,:ibro i °l e-0h KIo 01 1 21 11 / 2mw IW 2 (1l-Y 1 ) 2

where Lo and P are the permittivity and permeability of free space, respect-

ively'.

Assuming that the pump waves originate from a transmitter in vacuum,

one can relate the amplitude Eoj to the vacuum pump power Pp through the

approximate expression P - Td2 V1o/. ° (E1 + 2. The efficiency with
p)0 01 E0 2 )

which the whistler wave is excited by the pumps is

n = R /PP. (29)

This is a nonlinear efficiency because it depends on the pump power. In order to

obtain a more practical expression for n we rewrite Eq. (29) as

T1 = - 4 (W po I lw-Q) (eKI I I ) 2 2- P (0P, (30)

8Td 4 V C7o/o [mww 2(1-Y1)

where we made the reasonable assumption that EO1 = E02 = E . Equation (30)

gives the coupling efficiency ti as a function of the total power radiated

by the pump.
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I I )1Scussion

The present calculation provides a clear example of how the nonlinear

efficiency for the radiation of a low frequency electromagnetic signal due

to the beat of two high frequency pumps can be determined from first princi-

ples. The calculation includes plasma nonuniformity as well as finite spatial

extent of the pumps. The figure of merit for the beat process is given by the

compact expression, shown in Eq. (30). A rough order of magnitude evaluation

of this expression shows a radiated power PR whose dependence on pump power

scales as P 'x' (Vo/c) p where v refers to the oscillating velocity ofp R s p' os

an electron due to the high frequency pump, and c is the speed of light.

This dependence illustrates readily the extreme inefficiency of the process

at low pump power (i.e., small v os). Another fundamental factor which lowers

the efficiency is that the coupling to the whistler wave occurs through elec-

tric dipole excitation. The dependence due to this effect appears through

the d-4 term in Eq. (30).

A more efficient excitation mechanism would be to use magnetic coupling,

i.e., to generate a nonlinear transverse current oscillating at the beat fre-

quency w. However, within the constraints of the present geometry (i.e.,

-B I VN0) this more desireable situation cannot be realized directly.

The most advantageous feature of the beat excitation described here

is the controllability of the spatial location from which the whistler eman-

ates. By proper adjustment of the pump frequency w1 and usage of Fig. 4 in

conjunction with Fig. 3 the optimum efficiency can be realized for a desired

remote location in the plasma. Due to the dispersive properties of whistlers,

the radiated low frequency signal exhibits a characteristic headlight pattern,

as is illustrated in Fig. 5. The signal is generated at the reflection layer

of the high frequency pumps and is radiated along a hollow cylindor concentric

!J
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with the tromp beam illumination spot.

Considering parameters typical of the auroral ionosphere, L 50 km, Ql/2n =

1.4 M z, reflection layer at ISO km, and present transmitter capabilities, i.e.,

p 5 M UIW, a l/2i = 5 MHz, w2/2T - 4.9 MHz, and antenna gain of 30 db, results

in values of the scaled quantities K = 4.64, A = 10.3, and III = 1.4. These

conditions give rise to the radiation of a whistler at w/27T = 100 KHz with an

electric field amplitude of 5iV/m at an extremely low nonlinear efficiency level

of n -\' 10- . In spite of the low system efficiency, present experiments detect

signals at comparable levels. (4,6)

It should also be mentioned that naturally occuring atmospheric lightning

radiates a broad spectrum of electromagnetic waves. In principle, the high

frequency noise waves can trigger the secondary radiation of whistlers by the

mechanism described in this work.

For parameters realizable in a large laboratory plasma device, o=

400G, w/21 = 2.8 GHz, w,/21T = 2.SGHz, L = lOr, one obtains K = 4.33, A = 11.2,

: -, . 1, which results in the excitation of a whistler at w/2T = 300 M Hz with

an electric field amplitude of 50 mV/m at a coupling efficiency of n - 10-8 for

an input pump power of 1 KW. Thus, the effect is amenable to experimental

investigation.

Finally, it should be noted that if the density gradient points at a

small angle 0 relative to the magnetic field, then the results described in

this study remain valid up to an order (2/lw1) 2 sin2 e. For ionospheric plasmas

this condition restricts the applicability of the present analysis to high

latitude auroral plasmas.
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Figure Captions

Fig. I teometry of the problem, where A is the scaled separation of the

pumps obtained in Eq. (19).

Fig. 2 Spatial pattern of the beat frequency antenna generated by the two

high frequency pumps. The arrows show the turning points for each

pump which are separated by a scaled distance A = 10. The radiated

whistler wavelength is shown on top for reference.

Fig. 3 Normalized k spectrum of the antenna pattern shown in Fig. 2.
z

The arrows indicate the magnitude of I corresponding to the wave-

numbers of the excited whistlers.

Fig. 4 Normalized whistler wavenumber K and separation of the pumps A

versus whistler frequency w for pump frequency w1 /21 = 5 MHZ, and

density scalelength L = 50 km.

Fig. 5 Sketch of the radiated whistlers showing the transverse dependence

of the amplitude [p = (x2 + y2)l/2]
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